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Abstract. Multi-agent Reinforcement Learning (MARL) has shown sig-
nificant success in solving large-scale complex decision-making problems
while facing the challenge of increasing computational cost and training
time. MARL algorithms often require sufficient environment exploration
to achieve good performance, especially for complex environments, where
the interaction frequency and synchronous training scheme can severely
limit the overall speed. Most existing RL training frameworks, which
utilize distributed training for acceleration, focus on simple single-agent
settings and are not scalable to extend to large-scale MARL scenarios. To
address this problem, we introduce a Scalable Asynchronous Distributed
Multi-Agent RL training framework called SADMA, which modular-
izes the training process and executes the modules in an asynchronous
and distributed manner for efficient training. Our framework is power-
fully scalable and provides an efficient solution for distributed training of
multi-agent reinforcement learning in large-scale complex environments.
Code is available at https://github.com/sadmaenv/sadma.

Keywords: Multi-agent Reinforcement Learning · Distributed Training
· Large Scale Multi-Agent Training.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) has achieved remarkable suc-
cess in many real-world decision-making problems that involve multi-agent sys-
tems across various domains, such as multi-player strategy games[3,17], network
routing[20], and autonomous driving[4]. However, due to the involvement of in-
teractions and cooperation among multiple agents, MARL environments tend
to be extremely complex. Existing algorithms often require a lot of interactions
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Table 1. Comparison of SADMA with other multi-agent reinforcement learning li-
braries.

Library Parallel Env
Distributed
Support

Distributed
Backend

Flexible
Resource
Allocation

Asynchronous
Training

PyMARL ✓ × - - ×
MARLlib ✓ ✓ Ray × ×
SADMA ✓ ✓ ZeroMQ ✓ ✓
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Fig. 1. Overall framework of SADMA. Our framework consists of five modules, each
of which runs on a separate process and can be deployed anywhere in the cluster
in a distributed manner with a unified data transfer interface. The sample worker is
responsible for managing the execution of environmental entities, the inference worker
generates actions based on the environment information, and the train worker updates
network parameters using sampled data and sends the latest parameters to the inference
worker.

with the environment to learn effective strategies[22]. However, as the number
of agents increases, the speed of interaction with environments may severely de-
crease due to the escalating complexity of inference within environments. This
results in the need for extensive training time, particularly in intricate environ-
ments.

In order to reduce training time, some researchers have suggested running
multiple instances of the environment in parallel using multiprocessing tech-
niques to improve the sample efficiency. Existing multi-agent reinforcement learn-
ing libraries such as PyMARL [16] and PyMARL2 [8] utilize python’s multi-
process programming technique to realize environment parallelism. However,
when confronted with large-scale complex multi-agent environments, environ-
ment instances may run very slowly and consume a lot of resources. Limited by
the computational resources of a single machine, simple environment parallelism
still cannot fulfill the demand. Although there are some relatively accessible
open-source distributed RL algorithm libraries, such as RLlib [11], which utilize
Ray [14] as the distributed framework, their focus is on single-agent RL algo-
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rithms, with limited support for MARL algorithms. Recently, MARLlib [9] was
introduced as an extension of RLlib to provide support for multi-agent reinforce-
ment learning algorithms. However, MARLlib mainly focuses on the encapsu-
lation and integration of algorithms and environments, and does not provide a
diverse and flexible distributed training scheme for multi-agent reinforcement
learning algorithms. In addition, MARLlib only implements a distributed sam-
pling process, which is not able to utilize the distributed GPU resources to make
full use of cluster computing resources to accelerate training. To the best of our
knowledge, there is no open source unified framework for distributed training of
multi-agent reinforcement learning algorithms that enables flexible and scalable
deployment for different cluster resource configurations.

In the context of large-scale MARL training, effectively harnessing cluster
computing resources to expedite training becomes a critical concern. However,
existing MARL algorithm libraries suffer from various problems and limitations
when facing large-scale distributed training demands. To address these chal-
lenges, we propose Scalable Asynchronous Distributed Multi-Agent RL train-
ing framework called SADMA. Our framework hopes to address the problem of
efficient acceleration of distributed training in large-scale multi-agent reinforce-
ment learning training scenarios. Our framework leverages multiprocessing tech-
niques and the lightweight asynchronous messaging library ZeroMQ (ZMQ) [7] to
construct a flexible distributed training framework. We specifically analyze the
training time-consuming problem in multi-agent reinforcement learning, and use
efficient distributed parallel sampling and asynchronous training to further re-
duce the waiting time during the training process. To enable flexible distributed
deployment and asynchronous training, we decouple and modularize the MARL
training process. In addition, we design efficient and unified data transfer inter-
faces for cross-process and cross-machine communication, bringing flexibility and
scalability to distributed deployments. Our framework adapts to different cluster
configurations, allowing flexible deployment of modules in clusters to fully uti-
lize computing resources. Furthermore, our framework is easy to use and deploy,
and with the help of deployment systems such as Kubernetes (K8s) [12], it is
possible to efficiently run distributed training tasks in large-scale clusters. Our
framework offers the following advantages:

– Scalability. Our framework is designed to be deployed in large-scale clus-
ters, allowing efficient utilization of computational resources thus achieving
significant training acceleration.

– Modularization. We modularize the MARL training process to simplify
algorithms construction and provide support for distributed training.

– Asynchronicity. We decouple the modules to run the sampling and training
process asynchronously, reducing the waiting time to achieve higher resource
utilization and runtime speeds.

– Flexibility. Modules can be combined and flexibly deployed anywhere in
the cluster to adapt to various cluster resource configurations.
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2 Related work

The success of Deep Reinforcement Learning(RL) is inseparable from huge data
and computing power, which leads to huge demand for distributed learning that
can speed up overall training and improve computational resource utilization.

Due to the structured computation pattern of RL algorithms, some successful
RL methods are proposed for improving sample and training efficiency. Early al-
gorithms improve sampling efficiency by interacting with multiple environments
simultaneously, such as Advantage Actor-Critic (A2C) [10], which aggregates
sample data and then performs SGD [15] iterations, using the updated strat-
egy to continue collecting new samples. Asynchronous Advantage Actor-Critic
(A3C) [13] uses multiple independent actors, each holding a policy copy, to
perform environment simulation sampling, action inference, and gradient com-
putation, respectively. GA3C [2], which is a hybrid CPU/GPU version of the
A3C, introduces a separate learner component that uses the GPU for action
generation and learning in an asynchronous implementation. These algorithms
make previous non-distributed DRL methods distributed using one machine.

Based on these efficient algorithms, some frameworks extend to distributed
training on multiple machines. Among them, IMPALA (Importance Weighted
Actor-Learner Architecture) [6] uses a GA3C-like architecture where parallel
actors communicate with environments, collect trajectories, and send them to
the learners for parameter updating. Since gradient calculation is put on the
learners’ side, which can be accelerated with GPUs, the framework is claimed to
scale to thousands of machines without sacrificing data efficiency. Based on IM-
PALA, SEEDRL (Scalable, Efficient, Deep-RL) [5] achieves further performance
improvements through a centralized inference architecture and an optimized
communication layer. The communication between learners and actors is mere
states and actions reducing latency.

On the basis of these algorithms, a series of open-source distributed RL li-
braries and frameworks have been produced, some of which provide support for
multi-agent reinforcement learning. RLlib [11] integrates a large number of RL
algorithms into a high-performance, scalable distributed algorithm framework
based on Ray [14]. However, its framework lacks the flexibility to control the de-
tails of distributed training to achieve targeted performance optimization, and
code packaging is complex. MAlib [23] also develops a framework for distributed
MARL algorithms based on population training with Ray. MARLlib [9] is a new
distributed MARL library that combines the core advantages of Ray and RL-
lib, but does not provide a flexible distributed deployment scheme to effectively
utilize distributed computing resources. There is still no flexible and scalable dis-
tributed training framework for multi-agent reinforcement learning algorithms.
Our training framework is different from existing algorithm libraries in that we
modularize the training process and run the modules asynchronously to achieve
higher training efficiency; we use ZMQ, a high-performance asynchronous mes-
saging library, instead of ray to build a flexible and scalable distributed deploy-
ment scheme.
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3 Framework Design

In this section, we specifically describe the overall design and characteristics
of SADMA. The overall framework is shown in Fig. 1. Based on multi-process
techniques and the asynchronous messaging library ZMQ, we build a unified
data transfer interface to facilitate efficient communication between processes
to achieve compatibility with cross-process and cross-machine data transfer. We
modularize the multi-agent reinforcement learning training process and employ
asynchronous execution to reduce the waiting time in the original synchronous
training process as much as possible. We perform a number of specific per-
formance optimizations for sampling and training to further increase runtime
speed and improve resource utilization. Our framework has great scalability and
flexibility to adapt to different cluster resource configurations, and is able to
support large-scale MARL training and effectively utilize cluster resources to
reduce training time.

3.1 High-Performance Data Transfer Scheme

Cross-Process Data Transfer In parallel computing, multiprocess program-
ming has become a common way to fully utilize multi-core processors and im-
prove program performance. However, for multi-agent reinforcement learning
training tasks, frequent data transfers between processes are usually necessary,
which requires efficient data transfer mechanisms to reduce the waiting time.
We use cross-process data transfer scheme for modules running on the same
machine. To handle CPU-side data, we build pipes for inter-process data trans-
fer. To avoid unnecessary data copying, we utilize shared memory for frequently
read and written data, such as replay buffers. As for GPU-side data, which are
shared across processes, we exclusively transfer pointers to circumvent resource-
intensive data transfers.

Cross-Machine Data Transfer To achieve high-performance distributed train-
ing, improving the efficiency of cross-machine data transfer is paramount. Ex-
isting distributed reinforcement learning training frameworks typically employ
Ray, an open-source unified compute framework, as their communication scheme.
However, despite its user-friendliness, Ray is not lightweight and efficient enough.
Since large-scale multi-agent environments may involve hundreds of agents with
large observation dimensions, there is a high demand for distributed training
data transfer. In pursuit of efficiency, we employ ZMQ, a lightweight and high-
performance messaging library, to facilitate more expedited cross-machine data
transfer. With the advantages of flexibility, reliability, high-performance and
lightweight, ZMQ is ideally suited to handle the frequent data transfer require-
ments in large-scale multi-agent reinforcement learning training. Recently some
researchers have also evaluated the speed benefits of ZMQ for communication [1].
We conduct a comparative analysis of the cross-machine transfer efficiency be-
tween ZMQ and Ray for various data sizes. Fig. 2 shows that ZMQ is more
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Fig. 2. Cross-process and cross-machine data transfer speed comparison between ZMQ
and Ray. We tested the time consumption at different transfer data sizes. We created
arrays of shape (N,N,N) and varied N from 1 to 1000, with the horizontal axis rep-
resenting the size of N .

efficient than Ray for both cross-process and cross-machine communication, es-
pecially for cross-machine transfers. This supports our choice of ZMQ as the
efficient data transfer scheme.

Unified Transfer Interface Design In order to flexibly adapt to single-
machine and cross-machine data transfer, we unified the data transfer interface.
We wrap these two data transfer schemes into a unified interface at the code
level, which decides which scheme should be used for the current transfer based
on the configuration. This unified design can bring many benefits. First, it sim-
plifies programming at the code level so that users do not need to care about the
tedious communication approach, and only need to set it in the configuration
file. Second, it enhances the flexibility of our distributed training framework,
enabling modules to be easily deployed across the distributed cluster without
the need for custom communication implementations for each module.

3.2 Modular Design

In order to support distributed training, we modularize the training process so as
to fully utilize the computational resources to run each module asynchronously
to reduce the waiting time and improve the overall training speed. Our overall
modularized design is shown in Fig. 1. The detailed functions of each module
are described below.

Transfer Worker. In order to facilitate inter-module data transfer, we de-
velop the transfer worker based on the unified transfer interface. The transfer
Worker is responsible for cross-machine or cross-process data transfer between
modules. It operates within a separate process and employs multiple sub-threads
to concurrently handle inter-module data transfer operations, eliminating data
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waiting times that could otherwise impact the main program’s execution. Ben-
efiting from the unified transfer interface design, transfer worker can flexibly
adapt to both single-machine and cross-machine inter-process communication
scenarios. In combination with the transfer Worker, other modules enable high-
performance and flexible data transfers that can be deployed in clusters of various
resource configurations for efficient and convenient distributed training.

Sample worker. Large-scale MARL tasks typically require massive amounts of
interaction data for training. However, due to limitations in the inference speed
of the environments, running a single environment for data sampling cannot
efficiently provide the required training data in a timely manner. The prevail-
ing approach is to parallelize multiple environments using multiprocessing tech-
niques to accelerate the data sampling process. Hence, we construct the sample
worker which is responsible for managing the interactions of multiple parallel
environments.

Each sample worker contains a designated number of parallel environments
that utilize multiprocessing techniques to fully leverage computing resources.
In order to achieve better scalability and resource utilization, we separate and
asynchronously execute environment interaction and policy inference. The sam-
ple worker refrains from conducting policy inference and instead focuses solely
on managing the execution of environment instances. When interacting with
the environment, the sample worker transfers all the environmental information
to the inference worker via the transfer worker, and then the inference worker
performs policy inference based on the transferred data and returns the corre-
sponding actions to the sampler worker. After receiving the actions, the sample
worker executes actions for corresponding environments and collects the informa-
tion returned from the environment and transfers them to the inference worker
again. All parallel environments interact synchronously.

Separating the environment execution from the policy inference can bring
benefits to distributed training. Since policy inference involves neural network
computation, which generally requires GPU, while environment execution only
requires CPU, we can flexibly allocate computing resources to the inference
worker and sampler worker for different cluster configurations to fully utilize the
cluster resources.

Inference Worker. The inference worker is responsible for policy inference to
provide actions for interacting with the environment. The inference worker cre-
ates the episode buffer for each environment it is responsible for, since complete
episodes are often used as training data in MARL algorithms such as QMIX.
The environment information transferred from the sample worker and the policy
inference data are saved in the corresponding episode buffer after each interac-
tion step. When an episode is finished, the full trajectory will be stored in the
trajectory buffer in memory. In order to save unnecessary memory consumption,
the number of episodes stored in the trajectory buffer can be less than the num-
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ber of environments. The data in the trajectory buffer is ready and just waiting
to be used for training.

In the case of on-policy algorithms such as IPPO [18], when the trajectory
buffer reaches its capacity, it will no longer accept new trajectories from the
episode buffer. If there is no free space in the trajectory buffer at the end of an
episode in the episode buffer, the inference worker will be temporarily stopped
until the data in the trajectory buffer are consumed. This limits the generation
of outdated data, which can impact the performance of the on-policy algorithm.
Although our framework runs asynchronously, there are still synchronization
constraints for the On-policy algorithm, which allows us to approach the training
bottleneck speed with the guaranteed quality of the sampled data.

Batch worker. In the context of multi-agent reinforcement learning algorithms,
the typical requirement is to train on a batch of episodes at once. To support
large-scale distributed sampling, we allow the setup of multiple distributed in-
ference workers. Once these episodes are collected, they must be organized into
a batch and prepared for training on the GPU. Consequently, there is a need
to transfer the data collected in the trajectory buffer to the train worker. To
address this data management challenge, we introduce the batch worker that
collaborates with the train worker.

The batch worker’s role is to consolidate episode data from each inference
worker into a batch and then transfer this batched data onto the GPU, placing it
into the train buffer. The train worker, in turn, retrieves the training data directly
from the GPU using data addresses. The batch worker runs asynchronously
on a separate process without affecting the train worker. It operates as a data
processing module, preparing data required for the upcoming training in advance
while the train worker focuses on policy updates. This approach eliminates the
need for the train worker to wait for data to be processed, resulting in significant
time savings.

Train Worker The role of the train worker primarily centers around agent
training and synchronization. With the presence of a batch worker, the train
worker is relieved from the burden of tedious data processing. This streamlined
workflow enables the train worker to devote undivided attention to agent train-
ing, resulting in improved efficiency. During each training step, the train worker
acquires the pre-processed batch data from the train buffer and proceeds with the
parameter update process. Subsequently, it dispatches the most recent param-
eters to each inference worker, ensuring parameter synchronization across the
system. Both the train worker and the train buffer are located on the GPU, thus
facilitating fast data communication. By design, the train worker is devoid of
superfluous functions, guaranteeing its efficient execution of training tasks. This
optimization enhances the performance and responsiveness of the train worker,
ultimately accelerating the overall training process.
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Fig. 3. Flexible distributed deployment in different cluster resource configurations.
Solid arrows represent cross-process communication and dashed lines represent cross-
machine communication

3.3 Flexible Resource Allocation

Existing libraries usually do not focus on performance issues in large-scale dis-
tributed training scenarios, but more on algorithm integration and packaging.
The most important difference between our framerwork and theirs is that we
design our framework for deployment and performance issues in distributed
training scenarios. This gives our framework a greater advantage for training
multi-agent reinforcement learning algorithms in large-scale complex scenarios.

Benefiting from the modularized design and unified data transfer interface,
each module can be flexibly combined with each other and assigned to different
computing nodes in the cluster regardless of the hardware device restrictions.
This facilitates deployment on clusters with different resource configurations.
Our framework naturally adapts to different resource configurations and thus can
fully utilize cluster resources to accelerate training. In the following we describe
in detail several different configuration types supported by our framework, as
shown in Fig. 3.

1-GPU Machine. Although our framework is designed for distributed train-
ing, considering that a single workstation may be sufficient for small-scale algo-
rithm development, we still take into account the adaptation and runtime per-
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formance on a single machine, as shown in Fig. 3(a). In the single-computer case,
the data between modules does not need to be transferred based on the network,
but only needs to be considered for cross-process transfer. We use inter-process
pipelines and shared memory to realize the communication, which ensures the
efficiency of training.

1-GPU & n-CPU Machines. When there are limited GPU computing nodes,
for example, there is only one GPU node and the rest are CPU nodes, as shown
in Fig. 3(b). In this case, there are two general approaches. One is to run only
multiple parallel environments on the CPU node, because the environments only
need CPU resources to run. Then both the training module and the inference
module are placed on the GPU node as its involved in the computation of the
neural network. Another approach is to run the parallel environments and the
corresponding inference modules on the CPU nodes and the GPU nodes perform
only the training. Each of these two approaches has its own advantages. For the
first scheme, since only the environment instance is running on the CPU node,
there is no need to design the cross-node transfer of model parameters, which is
time-consuming when the model parameters are large. However, the CPU node
needs to wait for the GPU node to send back the inference results at every
environment interaction, hence there is a delay. For the second scheme, since
both the inference module and the environment run on the CPU node, there is no
environment interaction delay as in the first scheme, but the network inference
using the CPU will be slower, and it needs to communicate with the GPU
node periodically to synchronize the model parameters. Existing libraries usually
focus on algorithm encapsulation and integration, and do not provide optional
distributed training schemes. Our framework, on the other hand, can flexibly
adapt to a variety of different configurations and only requires modification of
the configuration file without additional code changes.

N-GPU Machines. When all the computing nodes in the cluster have GPUs,
our framework can more fully utilize GPU resources to accelerate training un-
like MARLlib which is unable to utilize distributed GPU resources. Since the
modules can be freely combined, we can run the parallel environment and the
corresponding inference modules on multiple GPU nodes, as shown in Fig. 3(c).
Moreover, in order to accelerate inference and improve GPU utilization efficiency,
we can run multiple parallel environments with multiple inference modules on
a single GPU node, and try to place each inference module on a different GPU
card so as to make the load of GPU cards as balanced as possible. The training
modules can also be deployed on any node with spare resources. This flexible
configuration scheme can fully utilize the resources of each computing node, and
thus can show advantages when facing distributed training of large-scale complex
tasks. Existing libraries, such as MARLlib, do not have the ability to utilize GPU
resources across nodes, which limits their use in large-scale distributed training.
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Fig. 4. Synchronous and asynchronous environment reset.

N-GPU & M-CPU Machines. When having multiple CPU nodes and GPU
nodes, as shown in Fig. 3(d), our framework can flexibly deploy different compu-
tational tasks for different nodes’ computational resources. We can run parallel
environment instances on CPU nodes and then run inference modules on GPU
nodes. And in order to improve resource utilization, we can group multiple CPU
nodes, assign one GPU node to be responsible for inference, and run multiple
inference module instances on this node for load balancing. For the training
module, it can still be assigned to any GPU node with remaining resources.
Moreover, when there are enough GPU nodes, the training module can also be
deployed on a free GPU node and utilize multi-card accelerated training to cope
with large-scale training data demand.

3.4 High-Performance Specific Optimization

To address the training process as well as our distributed framework, we use a
series of targeted performance optimizations to improve the sampling speed and
training speed. The specific optimization scheme is as follows.

Synchronous & Asynchronous Environment Reset. Our framework sup-
ports both synchronous and asynchronous environment reset modes. The dif-
ference between these two modes is shown in Fig. 4. When interacting with
environments, we adopt batch inference to process information from multiple
environments at the same time. In synchronous reset mode, we wait for the
end of the episodes of all environments before resetting them, while in asyn-
chronous reset mode, we reset an environment as soon as its episode ends. Both
synchronous and asynchronous resets have their own advantages and disadvan-
tages. When environment reset takes too long, adopting asynchronous reset mode
may cause the overall interaction speed to decrease. This is because we need to
wait for all environments to return information before performing policy infer-
ence, which can result in a long wait if an environment is being reset. In this
case, synchronous reset mode may be better because it only needs to wait for
the last environment to finish its episodes and spend one reset time to reset
all environments, while asynchronous reset needs to wait for reset frequently. In
contrast, asynchronous reset is more advantageous when the environment reset
only consumes about the same amount of time as the environment execution.
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Fig. 5. Illustration of single-environment and multi-environment group interactions.
The blue rectangle represents the environment execution process and the orange rect-
angle represents the policy inference process.

Therefore, when environment reset consumes a lot of time, it is suitable to adopt
synchronous reset mode, while when environment reset consumes little time, it is
advantageous to adopt asynchronous reset mode. Our framework supports both
modes to deal with different application scenarios.

Multi-Environment Group. The problem with synchronized environment in-
teraction is that there is a sequential relationship between environment execution
and policy inference. This results in sample workers and inference workers always
having idle time and not being able to fully utilize compute resources. In order to
achieve more efficient environment interaction, we use multi-environment groups
to divide the environments managed in the sample worker into multiple groups,
as shown in Fig. 5. When an environment group returns the environment in-
formation and waits for the inference worker’s inference data, the rest of the
environment groups perform the environment execution. When the inference
worker finishes the inference, the rest of the environment groups will transfer
the environment information immediately, so that the inference worker will not
be in an idle state.

Batch Inference. Considering that multi-agent environments tend to have
large observation dimensions due to a large number of agents and in order to
speed up sampling, multiple sample workers are created in a distributed manner
for sampling. However, if only one inference worker is allocated to these sample
workers, since it is a synchronized environment interaction, it will result in the
need to wait for the slowest environment to return observations. The existing
practice of distributed reinforcement learning frameworks is to configure an in-
ference worker for each sample worker to ensure efficient inference. However,
since inference worker contains neural networks, too many inference workers can
lead to a large amount of GPU resources consumption in the case of large-scale
distributed training, which is not favorable for scalability. Therefore, we use the
batch inference method to form a batch of multiple sample workers and assign
an inference to be responsible for the interaction. This will bring flexibility and
efficiency to the construction of the sampling process. This is not as fast as as-
signing an inference worker to each sample worker, since the time it takes for an
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environment to return batch information depends on the slowest environment,
and the inference time increases due to the increase in the amount of data, but
it allows the user to be more flexible and fully utilize the distributed computing
resources. We can control GPU usage by controlling the number of inference
workers. This design brings powerful scalability to distributed sampling.

4 Experiments

In this section, we evaluate the performance of the proposed SADMA framework.
We choose to compare it with PyMARL2, a classic single-computer multi-agent
reinforcement learning algorithm library, and MARLlib, the latest MARL algo-
rithm library with distributed support, as baselines. In order to fully demon-
strate the advantages of our framework, we test the efficiency under different
computational resource scenarios on single-machine and multi-machine settings
respectively. Considering that PyMARL2 itself does not provide a distributed
deployment program, we only compare it with MARLlib in the multi-computer
scenario. We use two different hardware configurations: (1) System#1: 128-core
workstation with 8 GPUs; (2) System#2: a four-node cluster with each node
owning 64-core and 4 GPUs. All the GPUs mentioned are of the same model
(NVIDIA RTX3090). We describe the specific experimental setup and results
below.

4.1 Throughput Comparisons

Throughput measures the sampling speed of the framework, which affects the
overall training efficiency. Faster sampling speed reduces waiting time by provid-
ing the sample data needed for training in time. We compare to baselines under
different resource configurations for single and multiple machines settings.

We choose the classical multi-agent reinforcement learning environment SMAC
for testing. To increase the complexity of the environment interaction, we choose
27m vs 30m map in SMAC. Considering that multi-agent reinforcement learning
includes on-policy algorithms like IPPO and off-policy algorithms like QMIX,
these two categories of algorithms have different sampling processes, which may
lead to different sampling speeds. We separately test the throughput under these
two types of algorithms. In order to compare the sampling speed under different
computational resource conditions, we gradually increase the CPU core utiliza-
tion from 1 to 256 to test the throughput. To mitigate the impact of server
performance fluctuations on the tests, we run the training program continuously
for 5 minutes after it is fully initiated to calculate the average sampling speed.

Fig. 6 shows the comparison results. It can be seen that the sampling speed
of our framework is excellent on both single and multiple machines. Since Py-
MARL2 is a serial training process and does not set up different processes for
sampling and training, its sampling speed is slower. Benefiting from the asyn-
chronous training process and targeted optimization schemes, our framework
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Fig. 6. Throughput comparison results. The horizontal coordinate represents the num-
ber of CPU cores used for sampling, with each core running one environment instance.
Due to the high GPU memory usage of MARLlib, there is a memory overflow when
setting the number of workers to 128, so we only tested to 64 workers.

can achieve higher sampling speeds. However, while MARLlib is capable of dis-
tributed parallel sampling, it does not have a targeted distributed optimization
for the multi-agent reinforcement learning training process, resulting in poor
performance and scalability.

4.2 Convergence Acceleration

Although our framework has a higher sampling speed, it remains a question
whether this is effective in improving the wall times necessary for the algorithm
to converge. Therefore, we compare the wall times of each framework to make
the algorithm converge with the same resource configuration. For comparison
with the convergence performance of the algorithm in PyMARL2, we test it on
the single-machine configuration. We choose several maps in SMAC to test the
convergence speed of each framework with the QMIX and IPPO algorithms. We
uniformly set the number of workers to 8 and ensure that other parameters are
consistent.

Fig. 7 and Fig. 8 show the convergence of the QMIX and IPPO algorithm
in each framework on different maps respectively. It can be seen that our curves
are always above PyMARL2 and MARLlib, which indicates that our framework
is able to effectively utilize the computational resources to improve the con-
vergence speed of the algorithms under the same resource configuration. This
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Fig. 7. Comparison of wall times required for convergence of QMIX algorithms with
the same resource allocation.
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Fig. 8. Comparison of wall times required for convergence of IPPO algorithms with
the same resource allocation.

demonstrates the efficiency of our framework. This is achieved by SADMA build-
ing an asynchronous training flow through efficient inter-process communication
to increase the training speed. For off-policy algorithms such as QMIX, we de-
couple the environment sampling and training processes to run asynchronously,
thus reducing the waiting time due to sampling.

4.3 Scalability Evaluation

In order to evaluate the scalability of SADMA for large-scale multi-agent envi-
ronments, we constructed an environment containing 1225 agents based on the
CityFlow [21] environment, as well as a replenishment environment containing
1000 agents [19]. Due to the large number of agents, running an episode of the
environment takes a lot of time and memory. At the same time, single-step policy
inference needs to compute the actions of all the agents, which leads to slower in-
ference and larger GPU memory usage. In this case, SADMA can flexibly build a
distributed training process similar to IMPALA, deploying the inference worker
with the corresponding environment instances on the same compute node to
ensure scalability. However, MARLlib cannot deploy the training flow flexibly.

Fig. 9 shows the sampling speedup obtained by allocating different compu-
tational resources. For the CityFlow environment containing 1000+ agents, it is
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Fig. 9. Distributed sampling speed with different resource configurations. An episode
in the CityFlow environment contains 242 steps.

too slow to be able to develop and evaluate algorithms. While our framework
can easily implement distributed scaling to accelerate training, opening up the
possibility of researching large-scale complex muti-agent environments. For the
Replenishment environment, where millions of steps are often required for good
performance, the efficiency of sampling and training can be further improved
with distributed scaling. The distribution flexibility of SADMA brings power-
ful scalability and compatibility, which can theoretically scale to hundreds or
thousands of computational nodes, providing an efficient solution for research
on large-scale complex multi-agent tasks.

5 Conclusion

We propose SADMA, a scalable asynchronous distributed multi-agent reinforce-
ment learning training framework. Our framework achieves asynchronous sam-
pling and training by modularizing the multi-agent reinforcement learning train-
ing process. In order to adapt to the needs of large-scale multi-agent body rein-
forcement learning training, we build a high-performance unified data transfer
interface based on ZMQ and multi-process techniques, which makes it easy to de-
ploy each module at any location in the cluster to fully utilize the computational
resources. We also optimize the training process to further improve the speed.
We compare the training efficiency of existing algorithm libraries under different
resource configurations, and the results show that our framework is more efficient
and scalable to satisfy the needs of large-scale distributed training. We hope to
use our framework to build a generalized distributed multi-agent reinforcement
learning algorithm library to accelerate the algorithm research and application.
In future work, we will further improve our framework and add more algorithms
and environment support.
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